Journal of Organometallic Chemistry, 241 (1983) 27-36 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ALKYL- UND ARYL-KOMPLEXE DES IRIDIUMS UND RHODIUMS

X *. CHELATPHOSPHIN-STABILISIERTE RHODIUMORGANYLE Rh(R)[PhP(CH₂CH₂CH₂PPh₂)₂]: SYNTHESE, NMR-SPEKTROSKOPISCHER *cis,trans*-EINFLUSS UND MOLEKÜLSTRUKTUR VON Rh(2-MeC₆H₄)[PhP(CH₂CH₂CH₂PPh₂)₂]

E. ARPAC und L. DAHLENBURG*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 6. Juli 1982)

Summary

The organorhodium(I) complexes $Rh(R)[PhP(CH_2CH_2CH_2PPh_2)_2]$ (R = CH_2CMe_3 , CH_2SiMe_3 ; 2-MeC₆H₄, 4-MeC₆H₄, 2,4-Me₂C₆H₃, 2,4,6-Me₃C₆H₂; C₂Ph) have been prepared and characterized by ³¹P and ¹H NMR spectroscopy and an X-ray structure determination of the tolyl derivative $Rh(2-MeC_6H_4)$ -[PhP(CH₂CH₂CH₂PPh₂)₂].

For these compounds, the relative ³¹P coordination shifts $\Delta(PPh_2) > \Delta(PPh)$ distinctly reflect the electron-releasing properties of the organoligands σ -bonded *trans* to PPh. As expected, coupling between the ¹⁰³Rh nucleus and the phenylphosphino P atoms is weak and varies only little as the strong *trans* influence groups R are changed. In contrast to this insensitivity of ¹J(Rh-PPh) to R, Rh-P coupling within the Ph₂P-Rh-PPh₂ moieties shows considerable dependence upon the nature of the C-donor producing the *cis* influence series sp^3 -C < sp^2 -C < sp-C.

The ortho-tolyl complex crystallizes from toluene as 1/1 solvate Rh(2-MeC₆H₄)[PhP(CH₂CH₂CH₂PPh₂)₂] · C₇H₈. Crystals are orthorhombic, space group Pbc2₁, with a 1017.9(7), b 1974.3(14), c 2177.6(11) pm, and Z = 4. The structure has been refined to R = 0.079 for 2249 unique data with $F_0 > 3\sigma(F_0)$. Metal-phosphorus distances are 225.7(5) and 229.6(6) pm for Rh–PPh₂ and 227.3(6) pm for Rh–PPh.

Zusammenfassung

Die Organorhodium(I)-Komplexe $Rh(R)[PhP(CH_2CH_2CH_2PPh_2)_2]$ (R = CH_2CMe_3 , CH_2SiMe_3 ; 2-MeC₆H₄, 4-MeC₆H₄, 2,4-Me₂C₆H₃, 2,4,6-Me₃C₆H₂;

^{*} Vorausgehende Mitteilung: Ref. 1; zugleich Teil IV der Reihe "Oligophosphin-Liganden" (3. Mitteilung: Ref. 2).

 C_2 Ph) wurden dargestellt und durch ³¹P- und ¹H-NMR-Spektroskopie sowie durch eine Röntgenstrukturbestimmung des Tolylderivats Rh(2-MeC₆H₄)-[PhP(CH₂CH₂CH₂PPh₂)₂] charakterisiert.

An diesen Verbindungen spiegeln die relativen ³¹P-Koordinationsverschiebungen $\Delta(PPh_2) > \Delta(PPh)$ den Elektronendruck der *trans* zu PPh σ -gebundenen Organoliganden deutlich wider. Die Kopplung zwischen dem ¹⁰³Rh-Kern und den Phenylphosphino-P-Atomen ist erwartungsgemäss schwach und ändert sich beim Austausch der starken *trans*-Einfluss-Gruppen R nur wenig. Im Unterschied zu dieser Unempfindlichkeit von ¹J(Rh-PPh) gegenüber R zeigt die Rh-P-Kopplung in den Ph₂P-Rh-PPh₂-Einheiten eine beträchtliche Abhängigkeit von der Art des C-Donators, was zu einer *cis*-Einfluss-Reihe *sp*³-C < *sp*²-C < *sp*-C führt.

Der ortho-Tolylkomplex kristallisiert aus Toluol als 1/1-Solvat Rh(2-MeC₆H₄)[PhP(CH₂CH₂CH₂PPh₂)₂]·C₇H₈. Die Kristalle sind orthorhombisch. Raumgruppe Pbc2₁, mit a 1017.9(7), b 1974.3(14), c 2177.6(11) pm und Z = 4. Die Struktur wurde für 2249 unabhängige Daten mit $F_0 > 3\sigma(F_0)$ bis zu R = 0.079 verfeinert. Die Metall-Phosphor-Abstände betragen 225.7(5) und 229.6(6) pm für Rh-PPh₂ sowie 227.3(6) pm für Rh-PPh.

Einleitung

Tris(triphenylphosphin)-substituierte Rhodium(I)-Alkyle Rh(R)(PPh₃)₃ (R = CH₃, CH₂CMe₃, CH₂SiMe₃) gehen unter Abspaltung des jeweiligen Kohlenwasserstoffs RH spontan in die metallazyklische Verbindung Rh(o-C₆H₄PPh₂)(PPh₃)₂ über [3,4]: der Methylkomplex Rh(CH₃)(PPh₃)₃ [3] besitzt bei 34°C eine Halbwertslebensdauer von nur etwa 15 min [4,5]; seine Neopentyl- und Me₃SiCH₂-Homologen zerfallen selbst unter Kühlung (< 5°C) bereits "in statu nascendi" [4]. Im geschwindigkeitsbestimmenden Schritt dieser Alkan-Eliminierungsprozesse werden *ortho*-metallierte Hydridorhodium(III)-Intermediate RhH(R)(o-C₆H₄PPh₂)(PPh₃)₂ durchlaufen [3,6]. Die gegenüber Rh(CH₃)(PPh₃)₃ gesteigerte Zersetzlichkeit der Me₃ECH₂-Derivate (E = C, Si) führt man auf sterische Beschleunigung der die Zerfallsreaktionen einleitenden *ortho*-C-H-Addition durch die sperrigen Organoliganden zurück [4] (vgl. auch [7]).

Intramolekulare Anlagerungen von Kohlenstoff-Wasserstoff-Bindungen an Übergangsmetallzentren bedürfen vakanter *cis*-Koordinationsstellen [8], welche bei der thermischen Rh(R)(PPh₃)₃-Zersetzung durch zwischenzeitliche PPh₃-Dissoziation verfügbar werden sollten *. In Umkehrung dieser Verhältnisse eröffnet, wie nachfolgend gezeigt wird, die Komplexierung von Rh(I)-R-Fragmenten durch den Chelatliganden Bis[3-(diphenylphosphino)propyl]phenylphosphin PhP(CH₂CH₂-CH₂PPh₂)₂ ** [10-12] den Zugang zu stabilen Organoderivaten Rh(R)-[PhP(CH₂CH₂CH₂PPh₂)₂] **: die zu *ortho*-metallierten Folgeprodukten des Typs RhH(R)[*o*-C₆H₄P(C₆H₅)(CH₂)₃P(C₆H₅)₂] oder Rh[*o*-C₆H₄P-(C₆H₅)(CH₂)₃P(C₆H₅)₂] führenden Reaktionswege werden hier kinetisch blockiert, denn planare Platinmetallkomplexe des bdpp-Liganden sind

^{*} Für die im Vergleich mit den Rhodiumalkylen noch weit zersetzlicheren Iridiumorganyle Ir(R)(PPh₃)₃ ist eine Dissoziationslabilität der Phosphin-Liganden nachgewiesen [9].

^{**} In der Arbeit oft abgekürzt als "bdpp" und "Rh(R)(bdpp)".

wegen des idealen Chelatgriff-Winkels dieses μ -C₃-Triphosphins in Hinsicht auf eine Dissoziation der Phosphinogruppen inert [13].

Synthesen

Verbindungen des Typs Rh(R)(bdpp) mit sp^3 -C- und sp^2 -C-Liganden wurden durch Alkylierung von RhCl(bdpp) (I) [10] mit Organolithiumreagenzien erhalten (Gl. 1).

$$\frac{\text{RhCl(bdpp)} + \text{LiR} \rightarrow \text{Rh(R)(bdpp)} + \text{LiCl}}{(I)}$$
(1)
(I)

 $(R = CH_2CMe_3 (II), CH_2SiMe_3 (III); 2-MeC_6H_4 (IV), 4-MeC_6H_4 (V), 2,4-Me_2C_6H_3 (VI), 2,4,6-Me_3C_6H_2 (VII))$

Spaltung der Rh–C-Bindungen von III–V durch Phenylacetylen ergab den Alkinylkomplex $Rh(C_2Ph)(bdpp)$ (VIII) (Gl. 2).

$$\frac{\text{Rh}(\text{R})(\text{bdpp}) + \text{HC}_{2}\text{Ph} \rightarrow \text{Rh}(\text{C}_{2}\text{Ph})(\text{bdpp}) + \text{RH}}{(\text{III}-\text{V})}$$
(2)

II-VIII sind gelb gefärbte luftempfindliche Substanzen, die unter Inertgas bei Raumtemperatur unbegrenzt gelagert werden können. Auch bei längerer Aufbewahrung in Lösung (THF, Toluol) zersetzen sie sich nicht. Tabelle 1 enthält ausgewählte NMR-spektroskopische Daten. Für die anschliessende Diskussion berücksichtigt diese Zusammenstellung auch den Chlorokomplex I [13,14], das kationische Carbonylderivat [Rh(CO)(bdpp)]⁺ [13,14] sowie die bislang nur hinsichtlich ihrer ¹⁰³Rh-³¹P-Kopplungsparameter beschriebenen σ -C-Verbindungen Rh(CH₃)(bdpp) und Rh(CN)(bdpp) [14].

³¹P-Parameter und NMR-spektroskopischer cis, trans-Einfluss

Die Organyle II-VIII zeigen bei 36.44 MHz 31 P-Multipletts nahezu 1. Ordnung, d.h. Dubletts von Dubletts für die terminalen Ph₂P-Substituenten und doppelte Tripletts für die jeweilige zentrale PhP-Einheit (Fig. 1).

Durch die Koordination an das Rhodium(1)-Zentrum erfahren sowohl die Phenylals auch die Diphenylphosphino-Signale gegenüber den Resonanzen des freien Liganden eine Verschiebung Δ nach niederem Feld, wobei Δ (PPh) < Δ (PPh₂); (Tab. 1) Akzeptable Faktoren, welche die im Vergleich mit Δ (PPh₂) geringere Tieffeld-Verschiebung der Phenylphosphino-Resonanzen hervorrufen können, sind 1. der abschirmende Beitrag von Sechsring-Strukturen [15], der an den endständigen Phosphorkernen nur je einmal, am verbrückenden P-Atom hingegen zweimal wirksam wird, sowie 2. die Donatorstärke der σ -C-Liganden, welche die *trans*-Phosphoratome elektronisch höher belastet als die P-Kerne in den zu Rh-C *cis*-orientierten Ph₂P-Elementen.

Anders als die σ -C-Komplexe ergibt die Chloroverbindung RhCl(bdpp) ein ³¹P-Spektrum, in dem das Brücken-P-Atom, offenbar unter dem Einfluss des elektronegativen *trans*-ständigen Halogenoliganden, bei tieferem Feld erscheint als die Ph₂P-Resonanz [13]. Dies lässt vermuten, dass in den vorliegenden Rhodium(I)-Systemen die *trans*-Ligand-Beiträge die Sechsring-Anteile an der ³¹P-Abschirmung überspielen.

0		³¹ P-NMR "							¹ H-NMR	
		PPh ₂ 8 (ppm)	Δ.	PPh 8 (ppm)	Δ¢	² J(PP) (Hz)	¹ J(RhPPh ₂) (H2)	¹ J(RhPPh) (Hz)	ArCH ₃ 8 (ppm)	E(CH ₃) ₃ 8 (ppm)
R =			a management of the state of the		Notice of the second	ran na mangang na mang				
CI [13]		8.0	26.0	15.8	44.3	52.0	128.7	162.5		
CH, [14]						152.8	113.3		
CH₂C	Me3	18.6	36.6	- 5.6	22.9	47.8	176.2	105.8		1.00
CH_2SI	i Me ₃	19.6	37.6	- 5.2	23.3	48.8	161.7	112.9		-0.09
2-MeC	,H4	12.9	30.9	- 2,4	26.1	46.1	155.1	106.3	1.92	
4-MeC	Ъ.Н.4	19.3	37.3	3.3	31.8	45.9	157.5	107.0	2.16	
2,4-M€	₂ C ₆ H ₃	15.9	33.9	1.0	29.5	44.6	155.5	107.0	1.93	
									2.24	
2,4,6-N	Ae3C6H2	14.1	32.1	- 5.8	22.7	46.3	157.2	104.8	2.16	
									2.48	
									2.60	
II C ₂ Ph		12.5	30.5	1.5	30.0	50.0	137.8	118.1		
CN []	4]						134.5	122.6		
CO [17	4]						114.3	113.3		

AUSGEWÄHLTE ³¹P. UND ¹H-NMR-DATEN VON KOMPLEXEN DES TYPS BMB/19604 CH CH PPA VI

TABELLE 1

Die an den Organoderivaten II-VIII gemessenen Kopplungskonstanten ¹J(Rh-PPh), ca. 105–118 Hz, bewegen sich am unteren Ende der für die bislang bekannten Rh^I(L)(bdpp)-Spezies (L = OH⁻, Cl⁻, N₃⁻, CH₃CN, NCS⁻, C₅H₅N,

Fig. 1. ³¹P-NMR-Spektrum von Rh(4-MeC₆H₄)[PhP(CH₂CH₂CH₂PPh₂)₂].

 CH_3^- , CO, PEt₃, P(OMe)₃ [14]) von 166 Hz (L = OH⁻) bis 112 Hz (L = P(OMe)₃) reichenden Skala. Dagegen variieren die Rh-P-Kopplungen in den *cis* zur jeweiligen Metall-R-Bindung angeordneten Ph₂P-Rh-PPh₂-Einheiten über den gesamten ¹J(Rh^I-P)-Bereich [16], nämlich von 114 Hz (R = CO [13]) bis 176 Hz (R = CH₂-CMe₃). *sp*³- und *sp*²-Donatoren geben dabei Anlass zu ausgesprochen starken Rh-PPh₂-Kopplungen (> 150 Hz); bei Gegenwart des Phenylethinyl- oder Cyanoliganden werden mit 138 und 135 Hz deutlich herabgesetzte Werte von ¹J(Rh-PPh₂) beobachtet; im Carbonylkomplex [Rh(CO)(bdpp)]⁺ ist diese dann nur noch 114 Hz betragende Kopplungskonstante besonders klein [14].

Der für alle σ -C-Liganden vergleichbar grosse trans-Einfluss auf ¹J(Rh-PPh) spiegelt die hohe Beanspruchung des Rhodium-5s-Valenzorbitals in den M-R-Bindungen wider. Bei Anwesenheit der starken Donatoren Alkyl und Aryl in den Komplexen ist dies ein reiner σ -Effekt; für die schwächer basischen Cyano-, Phenylethinyl- und Carbonylliganden folgt die starke Rh(s)-C(sp)-Kovalenz aus der σ/π -Synergie in den M-C=X-Fragmenten (X = O, N, CPh). Der ¹J(Rh-PPh₂) schwächende cis-Einfluss, der in der Reihe $R = Me_3CCH_2 < Me_3SiCH_2 < Aryl \cong$ $CH_3 < C_2Ph \cong CN < CO$ deutlich differenziert ist, offenbart die Auswirkungen des π -Akzeptorvermögens der Organoliganden auf das Wechselspiel von σ - und π -Anteilen in den Ph2P-Rh-PPh2-Einheiten: je weiter die Akzeptorstärke der beeinflussenden Gruppe R anwächst, desto weniger werden *m*-Komponenten die Rh-PPh₂-Bindungen mitbestimmen; dies wiederum wird eine Erniedrigung der Gesamtorbitalund damit auch der für ${}^{1}J(Rh-P)$ massgeblichen s-Orbital-Überlappung zur Folge haben. Eine sterische Einflussnahme von R auf ¹J(Rh-PPh₂) kann ausgeschlossen werden, denn einerseits geben Liganden ähnlicher Raumerfüllung wie z.B. CH, (Kegelwinkel $\theta = 90^{\circ}$) [17] und CO ($\theta = 95^{\circ}$) Anlass zu ganz unterschiedlichen Kopplungen in den Ph₂P-Rh-PPh₂-Strukturfragmenten, und andererseits sind mit sperrigen Resten des Neopentyltyps, welche aufgrund ihrer Raumerfüllung ($\theta = 120^{\circ}$) geschwächte *cis*-ständige Rh-PPh₂-Bindungen erwarten liessen, die höchsten Werte von ¹J(Rh-PPh₂) verknüpft.

Es wurde vermutet, dass sich Rh-P-Bindungslängen und ¹J(Rh-P)-Parameter als korrelierbar erweisen werden, wenn hinreichend Daten von Rhodium-Phosphin-Komplexen zur Verfügung stehen [13]. So erwartet man für das Kation [Rh(CO)(bdpp)]⁺, in welchem ¹J(Rh-PPh) und ¹J(Rh-PPh₂) nahezu identisch sind, vergleichbare Abstände Rh-PPh und Rh-PPh₂, da im Falle des Chlorokomplexes RhCl(bdpp) den Kopplungskonstanten ¹J(Rh-PPh) = 162.5 Hz und ¹J(Rh-PPh₂) = 128.7 Hz [14] Rh-P-Bindungslängen von 220.1(2) bzw. 228.8(1) pm entsprechen [10]. Falls zwischen d(Rh-P) und ¹J(Rh-P) tatsächlich eine gute Korrelation besteht, müssten in den Rhodiumalkylen und -arylen II-VII, für welche "¹J(Rh-PPh₂) > ¹J(Rh-PPh)" gilt, die Rh-PPh₂-Abstände gegenüber den Rh-PPh-Abständen deutlich verkürzt sein, zumal der flexible μ -C₃-Phosphinligand Rh-P-Bindungen stabilisiert, deren Längen nach den bisher vorliegenden Ergebnissen zwischen 220 [10] und 237 pm [9] variieren können. Zur Prüfung wurde der Tolylkomplex IV strukturanalytisch untersucht.

Molekülstruktur von Rh(2-MeC₆H₄)(bdpp)·C₇H₈

Einkristalle der Titelverbindung wurden als 1/1-Addukt mit dem Lösungsmittel aus Toluol bei -30° C erhalten. Gang und Ergebnisse der Strukturbestimmung sind in den Tabellen 2–4 zusammengefasst *. Figur 2 zeigt eine SCHAKAL-Darstellung [20] des Molekülmodells.

TABELLE 2

Raumgruppe	Pbc2 ₁ (orthorhombisch)	
Zellparameter a	1017.9(7) pm	
Ь	1974.3(14) pm	
С	2177.6(11) pm	
V	$4376 \times 10^{6} \text{ pm}^{3}$	
Summenformel	$C_{50}H_{52}P_3Rh$ (848.8)	
Formeleinheiten je Zelle	4	
Dichte	1.288 gcm^{-3}	
$\lambda(Mo-K_{\alpha})$	70.926 pm	
$\mu(Mo-K_{\alpha})$	4.66 cm^{-1}	
Kristallgrösse	$0.2 \times 0.2 \times 0.3 \text{ mm}$	
Datensammlung	$\omega/2\theta$ -Abtastung (Syntex P2 ₁)	
Streubereich	$2^{\circ} \leq 2\theta \leq 50^{\circ}$	
gesammelte Reflexe	4375 (LP-korrigiert)	
systematische Auslöschungen	$0kl$ mit $k \neq 2n$; $h0l$ mit $l \neq 2n$	
unabhängige Daten	3998	
davon signifikant	2249 mit $F_0 > 3\sigma(F_0)$	
Lösung der Struktur	Direktmethoden (MULTAN [18])	
Verfeinerung	Blockmatrix (SHELX [19]); Rh, P und Komplex-C anisotrop.	
	Solvat-C isotrop; H-Atome nicht berücksichtigt	
abschliessender R-Wert	0.079 (Einheitsgewichte)	

^{*} F_0/F_c -Listen sowie eine Zusammenstellung der Temperaturfaktoren können beim Korrespondenzautor (L.D.) angefordert werden.

TABELLE 3

$H_2CH_2CH_2PPh_2)_2] \cdot C_7H_8^{\ a}$	
×10 ⁴) VON Rh(2-MeC ₆ H ₄)[PhP(CI	
LAGEPARAMETER (>	

tom			,	A row	/	/h	710
	x/a	0/6	2/0	AUII	n/v	01A	- / -
.h	- 2604 (1)	57 (1)	2500	C(21)	-4102(20)	- 730 (9)	3778(11)
(1)	- 3952 (5)	960 (3)	2585 (4)	C(22)	- 5157(28)	- 928(19)	4103(15)
(2)	-4113 (5)	- 648 (3)	2929 (3)	C(23)	- 4969(41)	- 1007(18)	4770(16)
(3)	- 1160 (5)	- 819 (3)	2341 (3)	C(24)	- 3811(36)	- 913(17)	5059(13)
(D)	- 1204(29)	710(10)	2113(13)	C(25)	- 2827(32)	- 707(18)	4708(17)
(5)	-240(19)	1034 (9)	2448(17)	C(26)	-2865(33)	- 632(18)	4097(13)
(<u>)</u> (3)	704(26)	1458(14)	2279(15)	C(311).	72(21)	- 750(11)	1688 (9)
(4)	786(29)	1597(12)	1647(20)	C(312)	1235(21)	- 409(12)	11)1621
(S)	- 110(35)	1252(17)	1234(20)	C(313)	2045(24)	- 321(15)	1273(12)
(9)	-1135(27)	861(12)	1469(13)	C(314)	1796(27)	- 558(16)	712(14)
(2)	- 2059(29)	502(17)	1052(11)	C(315)	560(32)	- 880(21)	684(14)
(8)	- 5783(20)	814(10)	2546(17)	C(316)	- 228(28)	- 1079(17)	1157(12)
(6)	-6266(20)	280(14)	2975(13)	C(321)	- 3(21)	- 1013(13)	2998(10)
(01)	- 5867(16)	-445 (9)	2802 (9)	C(322)	167(38)	- 520(18)	3445(14)
(11)X	-4142(22)	- 1556 (9)	2687(12)	C(323)	957(33)	- 718(18)	3959(13)
(12) (12)	- 2870(19)	-1884(10)	2684(10)	C(324)	1405(25)	- 1308(18)	4035(15)
3(13)	- 1939(26)	- 1653(12)	2167(11)	C(325)	1294(28)	- 1815(18)	3579(18)
(111) (111)	- 3775(23)	1707(14)	2109(11)	C(326)	437(29)	- 1662(13)	3060(13)
2(112)	- 2860(22)	2190(14)	2207(11)				
2(113)	- 2748(28)	2725(11)	1791(13)	C(T1)	3064(26)	1431(18)	5127(15)
C(114)	- 3471(42)	2774(15)	1252(13)	C(T2)	2751(26)	1036(18)	4616(15)
2(115)	-4325(35)	2266(19)	1132(13)	C(T3)	1917(26)	1293(18)	4164(15)
(116)	- 4542(30)	1751(14)	1543(12)	C(T4)	1397(26)	1943(18)	4223(15)
2(121)	- 3846(26)	1386(11)	3361(12)	C(T5)	1710(26)	2337(18)	4734(15)
2(122)	- 4702(33)	1910(17)	3554(14)	C(T6)	2544(26)	2081(18)	5186(15)
2(123)	- 4610(34)	2229(15)	4125(14)	C(T7)	3974(43)	892(19)	5376(21)
0(124)	- 3429(42)	2059(21)	4464(14)				
0(125)	- 2617(46)	1521(20)	4290(13)				
2(126)	- 2718(29)	1190(16)	3736(12)				

" Atome Rh-C(326): Komplexmolekül; Atome C(T1)-C(T7): Solvat-Toluol.

Bindung	Länge	Atome	Winkel	
Rh-P(1)	225.7 (5)	P(1)-Rh-P(2)	92.2(2)	·····
Rh-P(2)	227.3 (6)	P(1) - Rh - P(3)	175.2(3)	
Rh-P(3)	229.6 (6)	P(2) - Rh - P(3)	91.9(2)	
RhC(1)	209.9(26)	P(1)-Rh-C(1)	87.7(7)	
		P(2) - Rh - C(1)	179.4(8)	
		P(3)-Rh-C(1)	88.2(7)	

TABELLE 4. ZENTRALMETALL-LIGAND-BINDUNGSLANGEN (pm) UND INTERLIGAND-BINDUNGSWINKEL (°) VON $Rh(2-MeC_6H_4)[PhP(CH_2CH_2PH_2)_2]$

Der Komplex besitzt eine nahezu ideal planare Koordinationsgeometrie: der Diederwinkel zwischen den Ebenen durch P(1), Rh und P(2) sowie durch C(1), Rh und P(3), dessen limitierende Werte 0° für eine tetragonal-planare und 90° für eine tetraedrische Struktur sind, beläuft sich auf nur 2.6°, und die mittleren Abweichungen von Zentralmetall und Ligand-Donoratomen aus der besten Koordinationsebene sind mit 2.8 pm ebenfalls vernachlässigbar gering. Der Tolylring ist senkrecht zur Komplexebene angeordnet (Winkel zwischen den beiden Flächennormalen: 90.1°).

Die Längen der zueinander *trans*-ständigen Bindungen Rh-P(1), 225.7(5) pm, und Rh-P(3), 229.6(6) pm, sind signifikant voneinander verschieden. Dabei muss man die kräftige Aufweitung der Rh-P(3)-Bindung wohl als Folge auf den Kristallverband beschränkter intramolekularer Kontakte zwischen Atomen des Tolylliganden und eines der Phenylsubstituenten an P(3) interpretieren, zumal in Lösung die beiden terminalen Ph₂P-Phosphorkerne NMR-spektroskopisch äquivalent sind (Tab. 1). Belegen lässt sich dies durch den Vergleich der nichtbindenden Abstände $C(1) \cdots C(111)$, 328 pm, und $C(1) \cdots C(112)$, 338 pm, mit $C(1) \cdots C(311)$. 330 pm, und $C(1) \cdots C(312)$, 340 pm: erst bei Dehnung der Rh-P(3)-Bindung auf die gemessene Länge rücken die Phenyl-C-Atome C(311) und C(312) in die Van der

Fig. 2. Molekülansicht von Rh(2-MeC₆H₄)[PhP(CH₂CH₂CH₂PPh₂)₂].

Waals-Entfernung von ca. 320–340 pm vom Tolyl-Kohlenstoff C(1) *.

Die Länge der Rh-PPh-Bindung von IV beträgt 227.3(6) pm. Dieser Wert erweitert die Rh-PPh-Strukturparameter anderer bdpp-Derivate von Rhodium(I), die bislang für RhCl(bdpp) zu 220.1(2) pm [10], für [Rh(NC₅H₅)(bdpp)]⁺ zu 222.1(2) pm [14] und für [Rh(PEt₃)(bdpp)]⁺ zu 226.9(2) pm [14] bestimmt wurden, nur geringfügig in Richtung auf längere Metall-P-Abstände. Die zugehörigen Kopplungskonstanten ¹J(Rh-PPh) nehmen in gleicher Reihenfolge von 162.5 Hz (*trans*-Ligand: Chlorid) [13] über 139.7 Hz (*trans*-Ligand: Pyridin) [14] und 113.2 Hz (*trans*-Ligand: PEt₃) [14] auf 106.3 Hz (*trans*-Ligand: Tolyl) ab. Die NMR-Parameter differenzieren zwischen donatorstarken *trans*-Liganden wie Phosphin und Aryl demnach strenger als die Strukturdaten. Dieser Befund deckt sich mit früheren Beobachtungen an den *cis,trans*-Isomeren des Mesityliridium(I)-Komplexes Ir(2,4,6-Me₃C₆H₂)(CO)(PPh₃)₂, deren Zentralmetall-PPh₃-Bindungslängen gleichfalls keine deutlichen Unterschiede zwischen dem *trans*-Einfluss eines σ -Organorestes und dem eines tertiären Phosphins erkennen liessen [21].

Eine Korrelation zwischen den Kopplungskonstanten ${}^{1}J(Rh-PPh)$ und ${}^{1}J(Rh-PPh_{2})$ einerseits und den Abständen d(Rh-PPh) und $d(Rh-PPh_{2})$ andererseits ist für IV nicht gegeben. Während nämlich die Grösse der Rh-PPh₂-Kopplung (155.1 Hz) die der Rh-PPh-Kopplung (106.3 Hz) um fast 50% übersteigt, entspricht das Mittel der beiden Rh-PPh₂-Bindungslängen (227.7 pm) praktisch der Entfernung der Phenylphosphinogruppe vom Zentralmetall (d(Rh-PPh): 227.3(6) pm). Selbst die sterisch vermutlich nicht elongierte Bindung zwischen Ph₂P(1) und Rh zeigt mit 225.7(5) pm Länge gegenüber d(Rh-PPh) lediglich eine Verengung um etwa drei Standardabweichungen.

Experimentelles

Die Präparation der Komplexe wurde unter N_2 in trockenen, O_2 -freien Lösungsmitteln durchgeführt.

Standardsynthese der Alkyl- und Aryl-derivate Rh(R)(bdpp) mit $R = CH_2CMe_3$ (II), CH_2SiMe_3 (III), 2- MeC_6H_4 (IV), 4- MeC_6H_4 (V), 2,4- $Me_2C_6H_3$ (VI) und 2,4,6- $Me_3C_6H_2$ (VII)

0.35 g (0.5 mmol) RhClbdpp [10] wurden in 150 ml Ether suspendiert und mit 0.7-0.8 mmol des jeweiligen Organolithiumreagenzes LiR [22-24] bei Raumtemperatur zur Reaktion gebracht. Nach 2 h Rühren hatte sich die Hauptmenge der Chloroverbindung unter Bildung orangegelber Lösungen umgesetzt. Diese wurden filtriert und im Vakuum auf 5-10 ml konzentriert. Die Kristallisation der sich dabei ausscheidenden gelben Komplexe II-VII wurde durch Zugabe von 20 ml Ethanol vervollständigt.

Ausbeuten und Analysen nach Waschen mit Ethanol und Trocknen: II: 0.27–0.31 g (73–84%). Gef.: C, 67.00; H, 6.68. $C_{41}H_{48}P_3Rh$ (736.7) ber.: C, 66.85; H, 6.57%. III: 0.23–0.28 g (61–74%). Gef.: C, 63.60; H, 6.51. $C_{40}H_{48}P_3RhSi$ (752.7) ber.: C, 63.83; H, 6.43%. IV: 0.26–0.31 g (69–82%). Gef.: C, 68.47; H, 6.03.

^{*} Auch im Kation [Rh(PEt₃)(bdpp)]⁺ beobachtet man zwei mit 227.6(2) und 230.3(2) pm stark differierende Rh-PPh₂-Abstände; dies wird ebenfalls auf intramolekulare C····C-Kontakte (zwischen PEt₃ und PPh₂) zurückgeführt [14].

 $C_{43}H_{44}P_3Rh$ (756.7) ber.: C, 68.26; H, 5.86%. V: 0.20–0.26 g (53–69%). Gef.: C, 68.44; H, 5.96. $C_{43}H_{44}P_3Rh$ (756.7) ber.: C, 68.26; H, 5.86%. VI: 0.15–0.17 g (39–44%). Gef.: C, 68.55; H, 6.11. $C_{44}H_{46}P_3Rh$ (770.7) ber.: C, 68.57; H, 6.02%. VII: 0.24 g (61%). Gef.: C, 69.03; H, 6.18. $C_{45}H_{48}P_3Rh$ (748.7) ber.: C, 68.88; H, 6.17%.

Darstellung von $Rh(C_2Ph)(bdpp)$ (VIII)

0.6 mmol III, IV oder V wurden mit 0.65 mmol Phenylacetylen in 20 ml Toluol 4 h bei Raumtemperatur gerührt. Anschliessend wurde im Vakuum auf ca. 5 ml eingeengt. Auf Zugabe von 20 ml Ethanol fielen 0.31–0.34 g (67–74%) gelber Phenylethinylkomplex, der mit 2×10 ml Ethanol gewaschen und dann an der Diffusionspumpe getrocknet wurde. IR (KBr): ν (C=C), 2095 m und 2079 sh cm⁻¹. Gef.: C, 68.87; H, 5.62. $C_{44}H_{42}P_3$ Rh (766.7) ber.: C, 68.93; H, 5.52%.

Dank

Den Mitgliedern unseres Institutsrates danken wir für die Unterstützung durch Haushaltsmittel. Herrn Prof. Dr. E. Weiss sei für die Gewährung von Diffraktometer-Messzeit herzlich gedankt. Der Firma Degussa, Hanau, gilt unser Dank für grosszügige Edelmetallchemikalien-Spenden.

Literatur

- 1 L. Dahlenburg, F. Mirzaei und A. Yardimcioglu, Z. Naturforsch., B, 37 (1982) 310.
- 2 E. Arpac und L. Dahlenburg, Z. Naturforsch., B, 36 (1981) 672.
- 3 W. Keim, J. Organometal. Chem., 14 (1968) 179.
- 4 C.S. Cundy, M.F. Lappert und R. Pearce, J. Organometal. Chem., 59 (1973) 161.
- 5 C.S. Cundy, C. Eaborn und M.F. Lappert, J. Organometal. Chem., 44 (1972) 291.
- 6 G.M. Whitesides und W.J. Ehmann, J. Am. Chem. Soc., 92 (1970) 5625.
- 7 B.L. Shaw, J. Am. Chem. Soc., 97 (1975) 3856.
- 8 J.F. van Baar, K. Vrieze und D.J. Stufkens, J. Organometal. Chem., 97 (1975) 461.
- 9 L. Dahlenburg, Habilitationsschrift, Universität Hamburg, 1982; Chemiedozententagung, Kaiserslautern, 1982, Vortragsreferat B 24.
- 10 Th.E. Nappier (Jr.), D.W. Meek, R.M. Kirchner und J.A. Ibers, J. Am. Chem. Soc., 95 (1973) 4194.
- 11 E. Arpac und L. Dahlenburg, Z. Naturforsch. B, 35 (1980) 146.
- 12 R. Uriarte, T.L. Mazanec, K.D. Tau und D.W. Meek, Inorg. Chem., 19 (1980) 79.
- 13 R. Mason und D.W. Meek, Angew. Chem., 90 (1978) 195; Angew. Chem., Int. Ed. Engl., 17 (1978) 183.
- 14 G.G. Christoph, P. Blum, W.C. Liu, A. Elia und D.W. Meek, Inorg. Chem., 18 (1979) 894.
- 15 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 16 D.W. Meek und T.J. Mazanec, Acc. Chem. Res., 14 (1981) 266.
- 17 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 18 P. Main, L. Lessinger, M.M. Woolfson, G. Germain und J.P. Declercq, MULTAN 77, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data; University of York, England, und Université de Louvain, Belgien, 1977.
- 19 G. Sheldrick, SHELX 76, Program for Crystal Structure Determination; University of Cambridge, England, 1976.
- 20 E. Keller, SCHAKAL, ein FORTRAN-Programm für die graphische Darstellung von Molekülmodellen, Universität Freiburg, Deutschland.
- 21 L. Dahlenburg, K. von Deuten und J. Kopf, J. Organometal. Chem., 216 (1981) 113.
- 22 L. Dahlenburg und R. Nast, J. Organometal. Chem., 110 (1976) 395.
- 23 H.L. Lewis und T.L. Brown, J. Am. Chem. Soc., 92 (1970) 4664.
- 24 R.R. Schrock und J.D. Fellmann, J. Am. Chem. Soc., 100 (1978) 3359.